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Elastic moduli and damage evolution of
three-axis woven fabric composites

WEN-SHYONG KUO* , BIN-JEN PON
Department of Textile Engineering, Feng Chia University, Taichung, Taiwan

Three-axis orthogonal woven fabric composites composed of carbon fibres and epoxy resin

have been fabricated. Examined from micrographs, the fabric weaving yarns were found to

be very slender with aspect ratios ranging from 11—13.6. Based upon the observed geometry,

the composite has been modelled by a unit cell comprising wavy yarns. Both elliptical and

lenticular cross-sections were adopted to simulate the slender weaving yarns. Taking into

account one-dimensional stress concentration and yarn undulation, an iso-phase approach

has been developed to analyse the composite elastic moduli. A higher weaving yarn aspect

ratio was found to result in a lower modulus. Modulus reduction due to yarn undulation was

more significant in weaving directions. Material characterization has been conducted based

upon monotonic tensile and three-point flexural tests, and detailed damage mechanisms for

both loadings have been examined. The onset of damage under tensile loading was found to

be z-axis yarn debonding, followed by debonding and splitting in y-axis yarns. When

subjected to flexural loading, yarn debonding, transverse cracking, and interyarn matrix

cracking were the dominant damage mechanisms which appeared on specimen tensile

sides. Stress transfer among yarns and how it relates to the composite damage have been

discussed in detail.
1. Introduction
Three-dimensional textile composites are a unique
class of materials, produced by impregnating matrix
materials into fabric preforms to hold multidirectional
yarns together. According to fabricating techniques,
three-dimensional preforms are usually categorized
into the following groups: woven, braided, stitched,
and knitted [1]. Among them, woven and braided
fabrics can possess a relatively high fraction of rein-
forcing fibres in the out-of-plane direction and from
a major portion of high-performance three-dimen-
sional textile composites [1, 2]. In comparison with
two-dimensional laminated structures, textile com-
posites based on three-dimensional preforms offer
unique transverse properties. As a result of through-
the-thickness reinforcing fibres, the composite trans-
verse properties (including strength, stiffness, and
fracture toughness) can be effectively enhanced. Be-
cause these composites are essentially free from de-
lamination and edge effects, which are often serious
problems in laminated composites [3, 4], they are
suitable for multidirectional load-bearing applica-
tions. Another attractive feature is the ability to for-
mulate directly three-dimensional near-net-shape
fabrics. With this feature, joining and machining prob-
lems could be eliminated, and thus a better structural
integrity can be achieved.

Compared with laminated composites, three-
dimensional textile composites are significantly more
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complex in design and analysis due to spatial and
inhomogeneous fabric structures. Besides those re-
lated to fibre matrix microstructures, parameters in-
volved in designing three-dimensional textile com-
posites include yarn size, yarn orientation, and inter-
lacing patterns. Thus, it is often difficult to determine
analytically the material behaviour and to optimize the
composites through the control of these parameters.

In analysing elastic behaviour of the composites,
several approaches have been proposed. The simplest
method is probably the so-called aggregate model,
assuming that the composite stiffness is the sum of
each constituent stiffness weighted by its volume frac-
tion [5—8]. This model is a consequence of the as-
sumption that the strains are independent of positions
[8]. As a result, strain concentrations due to fabric
architecture are smeared out. In practice, this model
would be suitable for fabrics with sufficient amount of
fibres in all three axes. In dealing with these complex-
geometry and multi-material problems, numerical ap-
proaches, such as finite element methods, have proven
to be useful [8—11]. Another promising approach is
the three-dimensional consistent higher-order theory
[12], using the concept of minimum potential energies
and Lagrange multipliers to ensure stress equilibrium
across dissimilar materials. However, these numerical
methods inevitably require a large number of nodal
points and a large increase in computational time to
obtain satisfactory three-dimensional stress and strain
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distributions. A simple means able to address this
problem in an elasticity consistent manner is unlikely
to exist. Based on the iso-phase model developed for
two-dimensional woven fabric composites [8, 13, 14],
the elastic moduli of the three-dimensional composites
with wavy yarns are analysed in this paper.

Owing to fabric architecture, complicated damage
mechanisms and significant non-linearity can be ex-
pected for the composites [15, 16]. Understanding the
onset and development of damage requires the knowl-
edge of defects caused during material processing and
stress concentrations due to material inhomogeneity.
Yarn interfacial defects caused by incomplete wetting
are especially important because yarn debonding,
which is analogous to delamination in laminated com-
posites, is one of the principal fracture mechanisms in
the early stage of damage accumulation. Besides yarn
debonding, subcritical damage in the composites in-
cludes interyarn matrix cracking, yarn splitting, and
fibre breakages associated with yarn abrasion. These
subcritical damage mechanisms generally occur at
a level much lower than ultimate strains, resulting in
a stiffness reduction and, possibly, an opening of direct
paths for environmental attack on fibres. Although
these mechanisms might contribute to an increase in
composite toughness, the associated shortcomings can
adversely affect the resulting stiffness and strength and
limit the usefulness of the composites. Thus, the goal
of this work was to provide experimentally validated
information on the composite damage evolution, with
particular emphasis on the interrelationship between
processing, microstructure, and fracture behaviour.

2. Experimental procedure
The fibre system used was high-tenacity carbon fibres
with 12K tow roving manufactured by Toho com-
pany. The fibre diameter, strength, and longitudinal
modulus are 7 lm, 2800 MPa, and 232 GPa, respec-
tively. By using a three-dimensional weaving loom,
fabrics with various weaving patterns can be fab-
ricated. Examined in this paper is a three-axis ortho-
gonal woven fabric composite. In this paper, axial
yarns are selected to be parallel to the z-axis, and the
weaving yarns are oriented in x and y directions. The
axial yarns consist of two tows of fibres (24K), and the
weaving yarns are of one tow (12K). A beating process
has been applied to weaving yarns in each weaving
cycle to enhance fibre content.

The woven fabrics were then infiltrated by epoxy
resin using a resin transfer moulding technique, fol-
lowed by a curing process to consolidate the com-
posites. The epoxy resin system used was GY260
DGEBA-type by Ciba-Geigy; the curing and toughen-
ing agents were HT976 and Der732, respectively. The
Young’s modulus and Poisson’s ratio of the epoxy are
3.5 GPa and 0.35, respectively. The consolidated com-
posites were then machined to desired dimensions for
testing specimens. During machining, the interlacing
loops on composite surfaces have been removed.

For tensile specimens, the nominal length, width,
and thickness were 200, 20 and 3 mm, respectively.
Glass-epoxy tabs with a length of 40 mm were adhes-
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Figure 1 Unit cell for the three-axis fabric: (a) straight yarns,
(b) wavy yarns with n

x
"1, n

y
"1.

ively bonded on both ends of the specimens. Specimen
surfaces were polished to reduce damage during ma-
chining and to facilitate microscopic observations for
damage evolution. Because the composite is macro-
scopically inhomogeneous, an extensometer, instead
of a strain gauge that measures strains in a much
smaller region, was used to obtain the average com-
posite strains. The nominal specimen dimensions for
three-point bending tests were 80, 20 and 3.1 mm, and
the span length was 65 mm. Detailed dimensions for
each specimen have been measured for the calculation
of material moduli. Six specimens were prepared for
each test, and the crosshead speed was 1 mmmin~1.

3. Fabric geometry
The woven preform examined in this paper is a three-
axis orthogonal fabric. The basic fabric structure is
shown in Fig. 1a with all yarns being straight. The
axial yarns, or so-called through-the-thickness yarns,
are selected in parallel with the z-axis, and the xy-
plane, where the weaving yarns lay, is termed the
weaving plane.

According to microscopic observations, yarn undu-
lation takes place in almost all yarns that are designed
to be straight. The following reasons may be the



causes for yarn distortion. First, yarn jam and distor-
tion often occur in fabrics especially for those having
high fibre content. For the fabricated preform in
which the fibre content in weaving yarns is much
higher than that in axial yarns, even a slight yarn jam
in between axial and weaving yarns can induce a suffi-
cient lateral force to cause axial yarn distortion. Sec-
ond, because preforms should eventually be un-
mounted from the weaving loom before performing
resin transfer moulding and curing, tensions in axial
yarns, that keep the yarn straight, no longer exist and
yarn undulation can be exacerbated. The third reason
is the beating process, which is necessary to enhance
preform compactness, upon weaving yarns. This
causes distortion in the weaving yarns. Weaving yarn
cross-sectional shapes, as will be discussed, are also
dominated by this process. Another reason is the driv-
ing force for resin to impregnate into preforms. Flex-
ible yarns can be deformed, especially when resin
viscosity is high and a high driving force is necessary.

Realistic simulation of observed spatial yarn undu-
lation is not easy, and thus a simple model is adopted.
Fig. 1b shows the unit cell for yarn undulation. The
unit cell dimensions are denoted as ¸

x
, ¸

y
, and ¸

z
.

Although the shapes are inherently irregular, the influ-
ence of the undulation on composite behaviour could
be examined by assuming sinuous wave functions with
amplitude k

x
, k

y
, and k

z
, respectively, for x-, y-, and

z-axis yarns. To simplify the analysis, the wavelengths
are limited to be 2¸
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x
, 2¸
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z
, where n

x
,

n
y
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the x-axis yarn on the weaving plane is described by
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Compared with the lengthwise distortion, cross-
sections of weaving yarns are predictable. Fig. 2 is
a micrograph showing weaving yarn cross-sections.
Having been squeezed during the beating process,
weaving yarns are slender and close to elliptical or
lenticular shapes with aspect ratios ranging from
11—13.6. On the other hand, axial yarn cross-sections
are irregular, and no single shape is representative.

In this paper, the axial yarn cross-section is as-
sumed to be circular with radius r

!
as shown in

Fig. 1b. The weaving yarns are either elliptical or
lenticular with major and minor semiaxes being
r
81

and r
82

, respectively (Fig. 3). In this paper, the
lenticular shape is defined to consist of two symmetric
parabolic curves. The gaps between axial and weaving
yarns are *g

x
and *g

y
. When yarn waviness is small,

yarn lengths and hence yarn volume fractions can be
obtained by neglecting higher order terms as
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Figure 2 Micrograph showing slender weaving yarns.

Figure 3 Shapes to model weaving yarns: (a) elliptical, (b) lenticular.
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where A
i0

is the cross-sectional area normal to the
centre-line of the i-axis yarn defined as
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From Fig. 1b, the unit-cell dimensions are ¸
x
"

2r
!
#2r

81
(1#2k1

x
)#2*g

x
, ¸

y
"2r

!
#2r

81
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y
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y
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;
"4r

82
. It should be noted

that the yarn spacings ¸
x
and ¸

y
are generally control-

lable and can serve as designing variables. On the
other hand, ¸

z
, as dominated by yarn size and squeez-

ing pressure, could not be changed freely in a control-
led manner, and thus should be measured from experi-
ments; similar conclusions can be drawn for r

81
, r

82
,

*g
x
, and *g

y
.

The total yarn volume fraction, denoted ½, is the
sum of the volume fraction of each yarn. The space not
occupied by yarn is termed the interyarn space, which
is supposed to be filled by matrix materials. The
matrix in this space is termed the interyarn matrix.
Consequently, the interyarn matrix volume fraction,
»

*.
, is equal to 1!½ if the interyarn space is void-

free.

4. Three-dimensional transformations
In this paper, the (1,2,3) system is termed on material
coordinate to relate the local principal material direc-
tions; and the (x, y, z) system is termed the geometrical
coordinate to refer to the global system. To represent
a spatial orientation, three linearly independent
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Figure 4 Three-dimensional rotation of a spatially oriented yarn.

rotational vectors are generally required. Yarns com-
prising fibres and matrix are very close to transversely
isotropic, because fibres are generally uniform within
yarns. Therefore, if axis 3 is designated to be the
fibre direction, the material is then isotropic on the
12-plane. As a result, the rotation with respect to axis
3 is irrelevant to the resulting yarn properties, and
thus two angles (h, /) are enough to represent a yarn
rotation as shown in Fig. 4.

Let u
1
, u

2
and u

3
be the unit vectors in the (1,2,3)

coordinate and u
x
, u

y
and u

z
be the unit vectors in the

(x, y, z) coordinate. The relations between these two
sets of vectors can be expressed as

C
u
x

u
y

u
z
D " C

mp !n mq

np m nq

!q 0 p D C
u
1

u
2

u
3
D (5)

where m"cos(h), n"sin(h), p"cos(/), and q"
sin(/).

Let us denote [Q] as the stiffness matrix to relate
the stress and engineering strain vectors in the 1—2—3
system. Because both stress and strain are second-
order tensors, the transformation between these two
coordinates can be readily obtained using tensor
transformation laws. Thus, the transformed stiffness
matrix for the x—y—z system can be proven to be [17]

[Q1 ]"[T]~1[Q][R][T][R]~1 (6)

where [T] is the stress transformation matrix as listed
in the Appendix A.1, and [R] is a 6-by-6 diagonal
matrix with the diagonal terms being M1,1,1,2,2,2N. All
matrices in Equations 2 and 3 are of 6-by-6. Unless
otherwise noted, the barred symbols refer to the x—y—z
systems. Equation 6 can be evaluated easily based
upon numerical computation. However, closed-form
solutions for a transversely isotropic material have
been obtained as listed in the Appendix A.2.
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5. Three-dimensional elasticity analysis
Owing to yarn architecture and material inhomogene-
ity, the stress and strain distributions in the com-
posites should be three-dimensional. The complexity
of three-dimensional precludes simple solutions sat-
isfying all required conditions from the elasticity point
of view. Therefore, simplification on the deformation
relations must be made in order that theoretical analy-
sis can be performed. For example, the aggregate
model, the most popular approach to evaluate the
elastic constants for complex three-dimensional com-
posites, assumes that the strains are constants
throughout a composite. Obviously, this model can be
inaccurate when strain concentration is significant.

The concept of the iso-phase mode originally de-
veloped by the author for two-dimensional woven
ceramic-matrix composites [8], is extended herein for
the three-dimensional problems. The composite is first
modelled by a unit cell, and strains within the unit cell
are assumed to be one-dimensional. Force equilibrium
is then used to evaluate the strain functions, which
enable composite deformation to be obtained. In
comparison with the traditional iso-strain or rule-of-
mixture approaches, this model takes into account
one-dimensional stress/strain concentrations. Phys-
ically this model is an improvement although the
significance of this improvement depends on fabric
geometries and fibre content [8].

The unit-cell deformations are assumed to be func-
tions of the associated directions, i.e. u

x
(x), u

y
(y), and

u
z
(z). The normal strains are therefore one-dimen-

sional, i.e. e
x
(x), e

y
(y), and e

z
(z). The Poisson’s effects

are taken into account in an average manner, and the
normal-shear coupling is neglected. Based upon these
assumptions, the stress—strain relations become [8, 17]
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where the superscript (k) is an index for material
constituent elements. For the fabric studied, there are
four constituent elements: x-, y-, and z-axis yarns, and
interyarn matrix. The QM (k)

ij
are the reduced stiffness of

the kth constituent element with respect to the x—y—z
coordinate. The barred strains stand for average
values defined as
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where ¸
x
, ¸

y
, and ¸

z
are the unit-cell dimensions.

Defining F
ij

as the resultant force component acting
on a cross-section perpendicular to the i-axis in the
direction of the j-axis, the resultant normal force is
equal to the summation of the force component in



each constituent element within a cross-section
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where A(k)
x

(x), A(k)
y

(y) and A(k)
z

(z) are the areas of the
kth constituent element in cross-sections normal to
the x, y and z directions, respectively. For example, for
a straight y-axis yarn with elliptical cross section, the
area functions are
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where the superscript (2) is the number to represent
the y-axis yarn. The closed-form area functions be-
come tedious if the yarn is wavy (k

y
O0). However,

their numerical values can be readily obtained.
The areas and stresses in Equations 9a—c are func-

tions of location. However, the forces F
ij

should re-
main constant due to force equilibrium. Substituting
Equations 7a—c into Equations 9a—c, the relations
between e

x
(x) and F

xx
can be recast as follows

e
x
(x)"

F
xx
!+

k
A(k)

x
(x) [QM (k)

12
e6
y
!QM (k)

13
e6
z
]

+
k
A(k)

x
(x)QM (k)

11

(11)

The resultant forces must be in equilibrium with ex-
ternally applied forces. Therefore
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where the r=
xx

is an externally applied stress at far-
field. Averaging the strains according to Equation 11
and using Equation 12, the relation between r=

xx
and

the average strains is obtained. Applying the same
procedure for r=

yy
and r=
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, the following relations can

be obtained
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where the superscript c in the stiffness matrix stands
for composite. The detailed expressions for Q#

ij
are

listed as follows
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where j is an index ranging from 1—3, and k is the
material index ranging from 1 to the number of con-
stituent elements. It should be noted that the stiffness
matrix Q#

ij
is not explicitly symmetric as required by

the reciprocal relation. This is due to the assumption
of the stress and strain relation (Equation 7) which is
a simplification for this three-dimensionally inhomo-
geneous problem. According to numerical examina-
tions, the discrepancy between Q#

ij
and Q#

ji
is generally

very small, and the diagonal terms in the stiffness
matrix are much larger than the off-diagonal ones,
reducing the influence of the discrepancy on com-
posite elastic properties.

The inverse of the stiffness matrix in Equation 13
yields the corresponding compliance matrix [S#],
from which the composite elastic moduli can be ob-
tained

E
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(15a)
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z
"

1

S#
33
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The composite Poisson’s ratios can also be obtained
from the same compliance matrix. To analyse com-
posite shear moduli, however, requires re-examination
on the composite deformation relations (Equation 7)
under shear forces, which is not discussed in this
paper.

6. Results and discussion
6.1. Experimental results
The fibre volume fractions of the yarns are calculated
based upon the fibre diameter (7 lm), the yarn sizes
(12K for weaving yarns, 24K for axial yarns), and the
measured yarn shapes. The measured weaving yarn
widths (2r

81
) were 3.1—3.8 mm, and the average value

of the weaving yarn thickness (2r
82

) was 0.28 mm.
Thus the aspect ratios are 11—13.6. For the fabricated
composite, the unit-cell dimensions ¸

x
and ¸

y
are both

8 mm, and ¸
z

(4r
82

) is 0.56 mm. The calculated fibre
volume fractions in the x-, y-, and z-axis are 10.3%,
10.3%, and 1.4%, respectively; the overall fibre vol-
ume fraction is 22%. The fibre volume fraction within
a yarn depends on the yarn cross-sectional area. The
calculated fibre volume fractions within the weaving
yarn are listed in Table I as a function of yarn aspect
ratio and yarn shape. With identical aspect ratio,
a lenticular shape is smaller and hence fibre packing is
denser.

Three typical stress—strain curves (a—c) for the com-
posite subjected to monotonically increasing uniaxial
tensile loads are shown in Fig. 5. The curves can be
roughly divided into three stages. Stage I is the initial
linear portion of the curves; no major damage has
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Figure 5 Stress—strain relations for tensile tests.

been found on specimen surfaces. The first deviation
from linearity occurs at a strain about 0.2%, followed
by another linear portion with reduced slope indicated
as Stage II. The second deviation from linearity occurs
at a strain about 0.9%. Toward the higher stress and
the slope is further decreased, and the stress—strain
curve shows slight upward convexity. The measured
values for the composite modulus from the slopes in
Stage I were 27.4—31.9 GPa.

Three typical load—deflection relations (a—c) for
three-point flexure tests are shown in Fig. 6. A rather
low slope has been found at the early stage of loading.
As the load increases, the material appears to behave
linearly almost up to its ultimate load, beyond which
the load drops drastically with a saw-like curve. The
measured ultimate loads were 940—1250 N, and the
measured flexure modulus based upon the linear por-
tion of the curves were 29.8—34.9 GPa.

6.2. Analysis of elastic modulus
Elastic properties of yarns are the essential informa-
tion in predicting the overall composite properties.
Based upon the fibre and matrix properties and the
calculated fibre volume fractions as listed in Table I,
four yarn elastic constants (E

1
, E

3
, G

13
, and m

13
) are

estimated by simple rule-of-mixture as listed in Ap-
pendix A.3, and the Poisson’s ratio in the isotropic
plane m

12
, due to the lack of a well-defined rule, is

assumed to be 0.3. With these constants, the 6-by-6
[Q] matrix can be easily obtained. The rotational
angles (h, /) for straight x-, y-, and z-axis yarns are
(0°, 90°), (90°, 90°), and (0°, 0°), respectively. Com-
posite stiffness elements and moduli are evaluated
according to Equations 14 and 15 with varying yarn
aspect ratio, yarn shape, and undulation amplitude.

The predicted Young’s modulus, E
x
, is shown in

Fig. 7 for the case k
x
"k

y
, k

z
"0, and n

x
"n

y
"1.

Within the measured range of the aspect ratio
(11.0—13.6), the modulus predicted by assuming a len-
ticular cross-section is slightly higher than that pre-
dicted by elliptical cross-section. With the weaving
yarn thickness fixed, the modulus slightly decreases as
the aspect ratio of weaving yarn increases, indicating
5450
Figure 6 Load—deflection relations for flexural tests.

TABLE I Fibre volume fractions in weaving yarns (r
82

"

0.14 mm)

Aspect ratio Elliptical Lenticular

11 0.682 0.803
12 0.625 0.736
13 0.577 0.679
14 0.536 0.631

Figure 7 Predicted composite modulus, E
x
, as a function of weav-

ing yarn shape; (d) solid, (e) lenticular, (h) elliptical. Average
tensile modulus, (s) average flexural modulus.

that the variation in weaving yarn width does not
significantly affect the modulus. Owing to the irregu-
lar nature of yarn geometries, accurately quantitative
measurements of yarn wavinesses require statistical
approaches. According to micrographs, waving ampli-
tude up to 20% of yarn spacing is likely to occur in
fabrics. Therefore, the effect of yarn waviness is illus-
trated with k

x
/¸

x
"0—0.2, and because E

x
is insensi-

tive to z-axis yarns, z-axis yarns are assumed to be
straight. As shown in Figs 7 and 8, the modulus
reduction rate increases with the waviness. As the yarn
waviness does not exceed k /¸ "0.05, the modulus is
x x



Figure 8 Predicted composite modulus, E
x
, as a function of weav-

ing yarn waviness. (e) Lenticular, (h) elliptical.

insensitive to the waviness. It is noted that the stiffness
reduction due to the off-axis of yarns is less prominent
than that of an angle-ply in a laminate, because yarn
undulation also results in a volume increase as re-
vealed in Equation 3. The ranges and average values
from both tests are indicated with the solid and open
circles representing tensile and flexural moduli, re-
spectively. The predicted range for E

x
is found to be

lower than the experimental ranges. The source data
of fibre modulus, fibre diameter, and yarn thickness
are crucial to the predicted results. Along with the
fibre and yarn data, relative high scatter in experi-
mental results is a problem requiring re-examination,
as will be discussed in Section 6.6.

Fig. 9 shows the variation of the transverse
modulus, E

z
, with respect to the waviness of z-axis

yarns and the aspect ratio of weaving yarns, assuming
k
x
"k

y
"0 and n

z
"1. While E

x
is dominated solely

by x-axis yarns, all yarns are important to E
z
because

fibre content in the z-axis is rather low (1.4%). Thus,
the reduction of E

z
due to z-axis yarn undulation is

less significant than that of E
x

due to x-axis yarn
undulation (Fig. 8).

It must again be stated that the theoretical model-
ling work is based on the premises that fibre/matrix
and yarn/matrix interfacial bondings are perfect, and
the composite is damage- and void-free. Analyses of
the influence of these factors in practical textile com-
posites might require knowledge of manufacturing
processes and would not be fully understood without
a micromechanics approach focusing on the interyarn
and intrayarn levels.

6.3. Stress transfer and characteristics
lengths

Stress transfer within yarns and the interyarn matrix is
essential for understanding composite damage mecha-
nisms. When the specimen is subjected to a uniaxial
load, forces are transferred from end tabs to the in-
terior through the action of shear stresses. The shear
Figure 9 Predicted composite modulus, E
z
, as a function of weaving

yarn shape. (e) Lenticular, (h) elliptical.

stresses gradually turn into normal stresses in the
middle (test section) of the specimen. For macroscopi-
cally homogeneous materials, shear stresses should
vanish in the test section where stresses reach a
steady-state. However, for the three-dimensional com-
posite discussed, the material is macroscopically in-
homogeneous, and the interfacial shear stresses
between yarns and the interyarn matrix should exist in
the test section. Thus, the normal stresses in yarns are
not invariable even when subjected to a uniaxial
tension.

Load transfer within the composite can be divided
into macroscopic and microscopic levels. Stress trans-
fer between yarns and the interyarn matrix is on
a macroscopic level, focusing on the interactions be-
tween yarns. Stress transfer between fibres and matrix
in a yarn is microscopic. The characteristics of these
stress-transfer mechanisms can be very different, and
the composite damage is dependent on these charac-
teristics. One important parameter to characterize
stress transferring is characteristic length, defined as
the length required for stresses to reach a steady state.
The characteristic length depends on the material
modulus, geometrical shape, and, more importantly,
interfacial properties. At the macroscopic level, yarns
are usually treated as homogeneous bodies, and the
yarn characteristic length is a few times the yarn
thickness or width [18]. Damage mechanisms, such as
yarn transverse cracking, yarn debonding, and yarn
pull-out, depend very much on this length. On the
other hand, the characteristic length for the stress
transfer within a fibre is a few fibre diameters, which is
much shorter than the yarn characteristic length. This
fibre characteristic length is important to microscopic
damage such as fibre breakage, fibre debonding, and
fibre pull-out. Microscopic analysis of the damage
within a yarn is somehow similar to that in a unidirec-
tional composite, which has been well documented in
the literature. Therefore, this research focuses on the
yarn damage rather than microscopic damage within
the fibre/matrix levels.
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Figure 10 Schematic drawing of damage evolution due to tensile
loading.

6.4. Damage due to tensile loading
The composite is virtually identical in the x and y di-
rections. In the case studied, the loading is selected to
be parallel to the x-axis yarns as shown in Fig. 10a. As
stresses are transferred among dissimilar components,
stress concentrations often occur at interfaces between
yarns and the interyarn matrix. According to micro-
scopic observation, cracks were found to initiate at the
interfaces of z-axis yarns in a form of yarn/matrix
debonding, which could be responsible for the first
deviation from linearity.

The debonded z-axis yarns can be located on the
edges or inside the specimen. It was found that those
z-axis yarns located on specimen edges were likely to
debond earlier than those inside the specimen, leaving
empty notches as shown in Figs 10b and 11. Two
reasons may account for this. First, the yarns on the
edge can be damaged during specimen-edge machin-
ing. Second, stresses in the interface of a z-axis yarn on
the edge are unbalanced, because one side of the yarn
is free from stresses. During application of the load,
some of these yarns were found to pop-out from speci-
men edges. On the other hand, for those inside the
specimen, the yarns are constrained and are less likely
to debond earlier than those on edges. Therefore, the
first damage mode tends to be the debonding of z-axis
yarns on specimen edges, followed by the debonding
of z-axis yarns inside specimens.

As the applied load increases, debonding and split-
ting in y-axis yarns occur as shown in Figs 10c, 10d
and 12. Both fracture modes can be termed transverse
cracking, analogous to that in laminated composites.
The propagation of these cracks will be hindered by
5452
Figure 12 Transverse cracks in a y-axis yarn.

Figure 11 Edge notches due to debonding in the z-axis yarns.

the strong fibres in the x-axis yarns. The creation of
these transverse cracks depends upon the flaws on the
interface or within the y-axis yarns. Once a transverse
crack forms, the stresses inside the yarn are signifi-
cantly changed due to the creation of free surfaces,
thus imparting loads to neighbouring x-axis yarns.
This stress redistribution reduces the possibility for
another parallel crack to occur in the cracked yarn.
The number of transverse cracks within a yarn de-
pends on the loading level and the yarn characteristic
length discussed in the previous section.

The densities of debonding in z-axis yarns and
cracking in y-axis yarns increase with the applied load,
creating more stress concentrations for x-axis yarns.
The development of the damage reduces the contribu-
tion of the y- and z-axis yarns to the composite stiff-
ness, as shown in the significant non-linearity of the
stress—strain curves. The correlation between the
amount of damage and the non-linearity needs further
investigation from both material characterization and
fracture analysis.

Because the majority of the load is carried by x-axis
yarns, the final composite failure is therefore deter-
mined by these yarns. The sudden drop of the curve
beyond the ultimate point suggests that x-axis yarns
are brittle and the propagation of yarn fracture is
unstable. Fig. 13 shows a specimen fractured due to
tensile loading. The separations of the z-axis yarns and
surrounding resin from the specimen create empty
holes. Crack propagation in x-axis yarns was found to
traverse the yarns; very little yarn brushing has been
observed.



6.5. Damage due to flexural loading
As shown in Fig. 6, slightly upward convexity occurs
at the beginning of loading; no clear indication of
damage has been found at this level. This feature,
which is not found in uniaxial tensile tests, could be
related to (1) the material deformation at the points
where the flexural load is applied, (2) the realignment
of undulated yarns, and (3) the closure of pre-existing
microcracks in the compressive (upper) part of the
specimen, resulting in an increased stiffness. The onset
of damage was found at the central region of the
bottom side in a combination of debonding in the
z-axis yarns, transverse cracking in y-axis yarns, and
interyarn matrix cracking. The appearance of these
modes depends on yarn location. Fig. 14 shows trans-
verse cracking in a y-axis yarn that was located at the
centre of the bottom surface.

The sharp drop in load, followed by a saw-like
curve, is associated with the tensile rupture in x-axis
yarns together with yarn peeling from the surface.
Yarn rupture and peeling proceed progressively from
the bottom towards the top surface, resulting in a zig-
zag fracture path observed from specimen edges, as
shown in Fig. 15a. This zigzag crack propagation can
be altered by z-axis yarns having weak interfaces,
resulting in the crack being deviated into an upward
direction along a debonded z-axis yarn interface (Fig.
15b). It is therefore noted that although the presence
of z-axis yarns can enhance transverse properties,
which has been emphasized as the major advantage of
three-dimensional composites, attention should be
paid to the created z-axis yarn interface and the asso-
ciated interfacial failure, which could involve opening
through-the-thickness cracks and cause unexpected
problems [15].

6.6. Material inhomogeneity and related
problems

It should be noted that the damage mechanisms dis-
cussed were based upon the micrographs taken from
composite surfaces, and whether surface fracture mor-
phology is representative of the damage inside the
composite is an important issue to pursue, especially
for inhomogeneous materials. Attention should also
be paid to the design of specimen dimensions for
experimental characterization. Compared to lami-
nates, material characterization standards for three-
dimensional textile composites are less-well defined.
For example, a narrow specimen should be inappro-
priate for the three-dimensional fabric composite
having large yarn spacing, because specimens with
identical sizes could contain uneven sets of x-axis
yarns. This can cause scattering in material character-
ization and result in dissimilar damage mechanisms.
Using wider specimens or cutting specimens with
identical relative position from composites would be
helpful for this, although practical limitations may
exist. Another feasible approach is to fabricate near-
net-shape fabrics designed for specimens [19]. The
advantages are obvious: (1) specimens are identical in
yarn content, (2) specimen machining and induced
Figure 13 A specimen fractured due to tensile loading.

Figure 14 Cracks on the tensile side due to flexural loading.

Figure 15 Crack propagation due to flexural loading.

material degradation can be eliminated, and (3)
surface loops can be retained to delineate better
the three-dimensional composites in practical
applications.

7. Conclusions
The moduli E

x
and E

z
predicted by assuming a len-

ticular shape are higher than those predicted by an
elliptical shape with identical aspect ratio. Within the
measured range for the weaving yarn aspect ratios
(11—13.6), the moduli are slightly decreased with the
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ratio. Causes for yarn undulation during composite
fabrication have been discussed, and the influence of
yarn undulation on the moduli has been numerically
examined. Because x-axis yarns possess higher fibre
volume fraction, E

x
is more sensitive to yarn undula-

tion. Damage mechanisms have been investigated
based upon tensile and flexural tests. Interfacial de-
bonding of z-axis yarns is found to be dominant for
crack initiation in tensile tests. Debonding and split-
ting in y-axis yarns are followed. These subcritical
types of damage are responsible for the non-linearity
in the stress—strain curves. The composite catastrophic
failure is associated with the brittle fracture in x-yarns.
In contrast to tensile tests, the onset of damage under
flexural loading consists of various mechanisms, in-
cluding debonding in z-axis yarns, transverse cracking
in y-axis yarns, and interyarn matrix cracking. The
rupture and peeling of x-axis yarns develop success-
ively from the bottom towards the top surface, result-
ing in a zigzag fracture path and a saw-like load—
deflection response. The stress transfer and material
inhomogeneity that are closely related to the damage
mechanisms of the composites are also discussed.
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Appendix
A.1. Stress transformation matrix [T]

and [T]~1
44 55 66 0
[T]"C
m2p2 n2p2 q2 !2npq !2mpq 2mnp2

n2 m2 0 0 0 !2mn

m2q2 n2q2 p2 2npq 2mpq 2mnq2

!mnq mnq 0 mp !np m2q!n2q

m2pq n2pq !pq np2!nq2 mp2!mq2 2mnpq

!mnp mnp 0 !mq nq pm2!pn2
D (A1)

[T]~1"C
m2p2 n2 m2q2 !2mnq 2m2pq !2mnp

n2p2 m2 n2q2 2mnq 2n2pq 2mnp

q2 0 p2 0 !2pq 0

!npq 0 npq mp np2!nq2 !mq

!mpq 0 mpq !np mp2!mq2 nq

mnp2 !mn mnq2 m2q!n2q 2mnpq pm2!pn2
D (A2)
A.2. Stiffness transformation for a
transversely isotropic material

If axis 3 is designated to be the axis of symmetry, the
material is then isotropic on the 12-plane, resulting in
the following relations

Q
11
"Q

22
(A3a)

Q
13
"Q

23
(A3b)
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Q
44
"Q

55
(A3c)

Q
66
"

1

2
(Q

11
!Q

12
) (A3d)

Using these relations, the resulting transformations
from Equation 6 can be proven to be

QM
11
"Q

11
(m2p2#n2)#Q

33
m2q2

!K
0
m2q2(m2p2#n2) (A4a)

QM
12
"Q

12
p2#Q

13
q2#K

0
q4m2n2 (A4b)

QM
13
"Q

12
n2q2#Q

13
(n2p2#m2)#K

0
m2p2q2 (A4c)

QM
14
"npq(Q

13
!Q

12
#K

0
m2q2) (A4d)

QM
15
"mnq(Q

13
!Q

11
#2Q

55
#K

0
m2q2) (A4e)

QM
16
"mnq2(Q

13
!Q

11
#2Q

55
#K

0
m2q2) (A4f )

QM
22
"Q

11
(n2p2#m2)#Q

33
n2q2

!K
0
n2q2 (n2p2#m2) (A4g)

QM
23
"Q

12
m2q2#Q

13
(m2p2#n2)#K

0
n2p2q2 (A4h)

QM
24
"npq(Q

13
!Q

11
#2Q

55
#K

0
n2q2) (A4i)

QM
25
"mpq(Q

13
!Q

12
#K

0
n2q2) (A4j)

QM
26
"mnq2(Q

13
!Q

11
#2Q

55
#K

0
n2q2) (A4k)

QM
33
"Q

11
q2#Q

33
p2!K

0
p2q2 (A4l)

QM
34
"npq (Q

13
!Q

11
#2Q

55
#K

0
p2) (A4m)

QM
35
"mpq(Q

13
!Q

11
#2Q

55
#K

0
p2) (A4n)

QM
36
"mnq2(Q

13
!Q

12
#K

0
p2) (A4o)

QM "Q (m2p2#n2)#Q m2q2#K n2p2q2 (A4p)
QM
45
"mnq2(Q

55
!Q

66
#K

0
p2) (A4q)

QM
46
"mpq(Q

55
!Q

66
#K

0
n2p2) (A4r)

QM
55
"Q

55
(n2p2#m2)#Q

66
n2q2#K

0
m2p2q2 (A4s)

QM
56
"npq(Q

55
!Q

66
#K

0
m2q2) (A4t)

QM
66
"Q

55
q2#Q

66
p2#K

0
m2n2q4 (A4u)



where K
0

is a parameter for transversely isotropic
materials defined as

K
0
"Q

11
#Q

33
!2Q

13
!4Q

55
(A5)

It is noted that K
0
"0 when the material is isotropic,

and hence K
0
might be interpreted as a deviation from

an isotropic medium.

A.3. Simple rule-of-mixture to predict
yarn properties

E
1
"E

2
"A

»
&

E
&

#

»
.

E
.
B
~1

(A6a)

E
3
"E

&
»

&
#E

.
»

.
(A6b)

m
31
"m

32
"m

&
»

&
#m

.
»

.
(A6c)

G
13
"G

23
"A

»
&

G
&

#

»
.

G
.
B
~1

(A6d)
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